Motor-CAD E-magnetic example script#

This example provides a Motor-CAD E-magnetic script. This script creates a partial custom winding pattern to change parameter values, run the analysis, and plot results. To create a full winding pattern, parameters must be specified for all coils.

Set up example#

Setting up this example consists of performing imports, specifying the working directory, launching Motor-CAD, and disabling all popup messages from Motor-CAD.

Perform required imports#

import os

import matplotlib.pyplot as plt

import ansys.motorcad.core as pymotorcad

if "QT_API" in os.environ:
    os.environ["QT_API"] = "pyqt"

Specify working directory#

working_folder = os.getcwd()

if os.path.isdir(working_folder) is False:
    print("Working folder does not exist. Choose a folder that exists and try again.")
    print(working_folder)
    exit()

Launch Motor-CAD#

print("Starting initialization.")
mcad = pymotorcad.MotorCAD()
Starting initialization.

Disable popup messages#

mcad.set_variable("MessageDisplayState", 2)
print("Initialization completed.")
print("Running simulation.")
Initialization completed.
Running simulation.

Create analysis#

Creating the analysis consists of showing the magnetic context, displaying the Scripting tab, setting the geometry and parameters, and saving the file.

Show the magnetic context.

mcad.show_magnetic_context()

Display the Scripting tab.

mcad.display_screen("Scripting")

Set the geometry.

mcad.set_variable("Slot_Number", 24)
mcad.set_variable("Tooth_Width", 6)
mcad.set_variable("Magnet_Thickness", 4.5)

Set parameters for creating the custom winding pattern.

The following code creates only a partial winding pattern.

Set the winding type to custom: mcad.set_variable('MagWindingType', 1)

Set the path type to upper and lower: mcad.set_variable('MagPathType', 1)

Set the number of phases: mcad.set_variable('MagPhases', 3)

Set the number of parallel paths: mcad.set_variable('ParallelPaths', 1)

Set the number of winding layers: mcad.set_variable('WindingLayers', 2)

Define a coil’s parameters: set_winding_coil(phase, path, coil, go_slot, go_position, return_slot, return_position, turns)

Set the stator/rotor lamination materials.

mcad.set_component_material("Stator Lam (Back Iron)", "M250-35A")
mcad.set_component_material("Rotor Lam (Back Iron)", "M250-35A")

Set the torque calculation options.

points_per_cycle = 30
number_cycles = 1
mcad.set_variable("TorquePointsPerCycle", points_per_cycle)
mcad.set_variable("TorqueNumberCycles", number_cycles)

Disable all performance tests except the ones for transient torque.

mcad.set_variable("BackEMFCalculation", False)
mcad.set_variable("CoggingTorqueCalculation", False)
mcad.set_variable("ElectromagneticForcesCalc_OC", False)
mcad.set_variable("TorqueSpeedCalculation", False)
mcad.set_variable("DemagnetizationCalc", False)
mcad.set_variable("ElectromagneticForcesCalc_Load", False)
mcad.set_variable("InductanceCalc", False)
mcad.set_variable("BPMShortCircuitCalc", False)

Enable transient torque.

mcad.set_variable("TorqueCalculation", True)

Set the operating point.

mcad.set_variable("Shaft_Speed_[RPM]", 1000)
mcad.set_variable("CurrentDefinition", 0)
mcad.set_variable("PeakCurrent", 3)
mcad.set_variable("DCBusVoltage", 350)
mcad.set_variable("PhaseAdvance", 45)

Save the file.

filename = os.path.join(working_folder, "../ActiveX_Scripting_EMagnetic.mot")
mcad.save_to_file(filename)

Run simulation#

Run the simulation.

mcad.do_magnetic_calculation()

Export results to CSV file#

Export results to a CSV file.

exportFile = os.path.join(working_folder, "../Export_EMag_Results.csv")
try:
    mcad.export_results("EMagnetic", exportFile)
    print("Results successfully exported.")
except pymotorcad.MotorCADError:
    print("Results failed to export.")
Results successfully exported.

Get and analyze results#

Get torque and voltage data.

shaft_torque = mcad.get_variable("ShaftTorque")
line_voltage = mcad.get_variable("PeakLineLineVoltage")

Graph the torque data.

num_torque_points = points_per_cycle * number_cycles
rotor_position = []
torque_vw = []

for n in range(num_torque_points):
    (x, y) = mcad.get_magnetic_graph_point("TorqueVW", n)
    rotor_position.append(x)
    torque_vw.append(y)

Graph the airgap flux density data.

Keep looking until you cannot find the point.

while success == 0:
    try:
        (x, y) = mcad.get_fea_graph_point("B Gap (on load)", 1, loop, 0)
        mech_angle.append(x)
        airgap_flux_density.append(y)
        loop = loop + 1
    except pymotorcad.MotorCADError:
        success = 1

Graph the harmonic data.

mcad.initialise_tab_names()
mcad.display_screen("Graphs;Harmonics;Torque")

num_harmonic_points = (points_per_cycle * number_cycles) + 1
data_point = []
torque = []
for n in range(num_harmonic_points):
    try:
        (x, y) = mcad.get_magnetic_graph_point("HarmonicDataCycle", n)
        data_point.append(x)
        torque.append(y)
    except pymotorcad.MotorCADError:
        print("Results failed to export.")


print("Simulation completed.")
Simulation completed.

Plot results#

Plot results from the simulation.

plt.subplot(211)
plt.plot(mech_angle, airgap_flux_density)
plt.xlabel("Mech Angle")
plt.ylabel("Airgap Flux Density")
plt.subplot(212)
plt.plot(rotor_position, torque_vw)
plt.xlabel("Rotor Position")
plt.ylabel("TorqueVW")
plt.figure(2)
plt.plot(data_point, torque)
plt.xlabel("DataPoint")
plt.ylabel("Torque (Nm)")
plt.show()
  • emag basics
  • emag basics

Exit Motor-CAD#

Exit Motor-CAD.

mcad.quit()

If you want to continue working with this instance of Motor-CAD, rather than using the preceding command, use this command: mcad.set_variable('MessageDisplayState', 0)

Total running time of the script: (1 minutes 6.829 seconds)

Gallery generated by Sphinx-Gallery